Types Of Shaping machine | Classification Of Shaper
SHAPER
The main function of the shaper is to produce flat surfaces in different planes. In general the shaper can produce any surface composed of straight line elements. Modern shapers can generate contoured surface. The shaper was first developed in the year 1836 by James Nasmyth, an Englishman. Because of the poor productivity and process capability the shapers are not widely used nowadays for production. The shaper is a low cost machine tool and is used for initial rough machining of the blanks.
Types Of Shaping Machine / Classification Of Shaping machine
1. According to the type of mechanism used
- Crank shaper
This is the most common type of shaper in which a single point cutting tool is given a reciprocating motion equal to the length of the stroke desired while the work is clamped in position on an adjustable table. In construction, the crank shaper employs a crank mechanism to change circular motion of “bull gear” to reciprocating motion of the ram.
- Geared type shaper
The reciprocating motion of the ram is some type of shaper is effect by means of a rack and pinion. The rack teeth which are cut directly below the ram mesh with a spur gear. The pinion meshing with the rack is driven by a gear train. The speed and the direction in which the ram will traverse depend on the number of gears in the gear train. This type of shaper is not very widely used.
- Hydraulic shaper
In a hydraulic shaper, reciprocating movement of the ram is obtained by hydraulic power. Oil under high pressure is pumped into the operating cylinder fitted with a piston. The end of the piston rod is connected to the ram. The high pressure oil first acts on one side of the piston and then on the other causing the piston to reciprocate and the motion is transmitted to the ram. The speed of the ram is changed by varying the amount of liquid delivered to the piston by the pump.
2. According to the position and travel of ram
- Horizontal shaper
In a horizontal shaper, the ram holding the tool reciprocates in a horizontal axis. Horizontal shapers are mainly used to produce flat surfaces.
- Vertical shaper
In a vertical shaper, the ram holding the tool reciprocates in a vertical axis. The work table of a vertical shaper can be given cross, longitudinal, and rotary movement. Vertical shapers are very convenient for machining internal surfaces, keyways, slots or grooves. Large internal and external gears may also be machined by indexing arrangement of the rotary table. The vertical shaper which is specially designed for machining internal keyway is called as Keyseater.
- Travelling head shaper
The ram carrying the tool while it reciprocates moves crosswise to give the required feed. Heavy jobs which are very difficult to hold on the table of a standard shaper and fed past the tool are held static on the basement of the machine while the ram reciprocates and supplies the feeding movements.
3. According to the type of design of the table
- Standard or plain shaper
A shaper is termed as standard or plain when the table has only two movements, vertical and horizontal, to give the feed. The table may or may not be supported at the outer end.
- Universal shaper
In this type, in addition to the two movements provided on the table of a standard shaper, the table can be swiveled about an axis parallel to the ram ways, and the upper portion of the table can be tilted about a second horizontal axis perpendicular to the first axis. As the work mounted on the table can be adjusted in different planes, the machine is most suitable for different types of work and is given the name “Universal”. A universal shaper is mostly used in tool room work.
4. According to the type of cutting stroke
- Push type shaper
This is the most general type of shaper used in common practice. The metal is removed when the ram moves away from the column, i.e. pushes the work.
- Draw type shaper
In this type, the metal is removed when the ram moves towards the column of the machine, i.e. draws the work towards the machine. The tool is set in a reversed direction to that of a standard shaper. In this shaper the cutting pressure acts towards the column which relieves the cross rail and other bearings from excessive loading and allows to take deep cuts. Vibration in these machines is practically eliminated. The ram is generally supported by an overhead arm which ensures rigidity and eliminates deflection of the tool.
Recent Posts
Mechanical Engineering is an essential discipline of engineering encompassing many specializations, with each contributing its unique aspect to the dynamic and inventive nature of this field. With...
The Ram Lalla idol, which is installed at Ayodhya's Ram temple has many significant religious symbols from Hinduism. All 10 incarnations of Lord Vishnu are engraved on the idol. Notably, Lord Ram is...