Design, Comparison and Analysis of a Composite Drive Shaft for an Automobile
Abstract

A drive shaft, also known as a propeller shaft or cardan shaft, it is a mechanical part that transmits the torque generated by a vehicle’s engine into usable motive force to propel the vehicle. Now a day’s two piece steel shaft are mostly used as a drive shaft. The two-piece steel drive shaft consists of three universal joints, a center supporting bearing and a bracket, which increases the total weight of an automotive vehicle and decreases fuel efficiency. This work deals with the replacement of conventional two-piece steel drive shafts with a one-piece E-glass/epoxy composite drive shaft for an automotive application. The basic requirements considered here are total deformation, stress and strain distribution in the modified model of the propeller shaft. The analysis is also repeated by applying the normal structural steel which is the usual material for manufacturing the propeller shaft and the obtained results are compared. Results obtained from this study shows that the modified model is compact and due to the usage of Epoxy component the data obtained are satisfactory. A one-piece hybrid composite full drive shaft is designed using 3D modelling software called SOLIDWORKS 2016 and its structural behavior is optimally analyzed using Finite Element Analysis Software called ANSYS WORKBENCH R 2016.
Main objective of the present study is to:
Recent Posts
Mechanical engineering is one of the most physically demanding professions that involve designing, manufacturing, and maintaining mechanical systems. A mechanical engineer's work involves utilizing...
Management is an essential component of every project and team. A competent manager is indispensable in guiding the team, owning outcomes, and mediating conflicts. Engineering managers, in...