Design and Fabrication Of Hydraulic Ram Pump -Mechanical Project 


 This project report is about designing a hydraulic ram pump to transfer water
from a river into awater tank with given dimensions and conditions. The
hydraulic ram pump designed is believedto be the most suitable and efficient for
the given conditions based on the calculations performed.
For the first step of designing, all the related problems are listed and understand.
Then, thespecifications, criteria and evaluation of the solutions are developed.
This including choosing themost suitable operational working principals for the
hydraulic ram pump (hydram), outline of thetheoretical background behind the
operation and its details calculations, which are being referredto the concept and
theory entitles to Fluid Mechanics. This is followed by the details drawing of
the hydraulic ram pump by using the SOLIDWORKS software. From the
calculationsperformed, the hydraulic ram pump designed with radius of 0.1m
and length of 0.5m has highand reasonable efficiency. Its flowrate to the
delivery tank is determined to be 0.00069m3/sandrequired about20 daysand3
hoursto fill completely the tank at a height of 20m from river flow .
In this project, we are required to design a hydraulic ram pump to fill a water
tank at a height of 20m from river flow. The conditions are as follows:
River Water (source): Depth = 0.5m Wide = 1.5m Flowrate = 120m /sec
Tank (to be filled): Volume = 1200m3.
Theory on Hydraulic Ramp (Hydram) 
Energy Cars, airplanes, light bulb, water pumps, computers, the human body
have all something incommon: they need energy to work. This energy can come
from many sources such as electricity, fuel, manpower, food. Different
technologies are used to transform one source of energy to another. For
example, car engines transform the chemical energy of the fuel into mechanical
energy allowing wheels to rotate. Another example related to water supply
projects is electric pumps: they use electricity to transform electrical energy into
potential energy of the lifted water. The potential energy is the energy of every
object due to its altitude. The object needs another source of energy to be lifted
and will lose its potential energy if it falls. Hydramsare designed to lift water
(i.e. give potential energy to the water) from a low cost source of energy.
Avoiding using fuel and electricity, the water hammer effect has shown to be
efficient and is the principle of hydrams. 
  • No Velocity 
  • Very High Pressure 
  • Water Hammer Effect 
The water hammer effect is a phenomenon that increases the pressure of a
water pipe in a short period of time. 
Considerations in hydraulic ram pump system design
The following factors need to be considered in hydraulic Ram pump system
  • Area suitability (head and flow rate)
  • Flow rate and head requirement
  • Intake design
  • Drive system
  • Pump house location
  • Delivery pipes routing
  • Distribution system
Basic Parts
From the figure it shows a typical hydraulic ram installation that comprises
  • Supply
  • Supply pipe (drive pipe)
  • Impulse valve/ waste valve/snifter valve
  • Delivery valve
  • Air chamber
  • Delivery pipe 
When we design a water system using ram pumps, we like to know before we build it, how much water it will deliver to how much head and with what efficiency manually manipulating these parameters using design methodology for different input parameters.Afterthat, we then design the hydram using SOLIDWORKS software which a CAD (computer aideddesign) software as .
Design and Fabrication Of Hydraulic Ram Pump
Design and Fabrication Of Hydraulic Ram Pump 
Applications and limitations of hydraulic ram pumps
For any particular site, there are usually a number of potential water lifting options. Choosing between them involves consideration of many different factors. Ram pumps in certain conditions have many advantages over other forms of water-lifting, but in others, it can be completely inappropriate. 
The main advantages of ram pumps are:
  1. Use of a renewable energy source ensuring low running cost.
  2. Pumping only a small proportion of the available flow has little environmental impact.
  3. Simplicity and reliability give a low maintenance requirement
  4. Automatic, continuous operation requires no supervision or human input.
The main limitations are:
  • They are limited in hilly areas with a year-round water sources
  • They pump only a small fraction of the available flow and therefore require source flows larger than actual water delivered
  • Can have a high capital cost in relation to other technologies. 


Spread the love